CopilotKit ¥

UAN/

What Is Generative UI?

Generative Ul refers to any user interface that is
partially or fully produced by an Al agent,
rather than authored exclusively by human
designers and developers. Instead of the Ul being
hand-crafted in advance, the agent plays a role in
determining what appears on the screen, how
information is structured, and in some cases even
how the layout is composed.

The core idea is simple: as agents become more
capable, an agentic application’s Ul itself becomes
more of a dynamic output of the system — able to
adapt, reorganize, and respond to user intent and
application context. This can be done in very
different ways, each with its own tradeoffs.

In the following sections, we will cover:

e Application Surfaces - where Generative
Ul shows up within an agentic application.

e Attributes - how different Generative Ul
types and uses vary and why.

e Types - the prominent types of Generative
Ul, their uses and tradeoffs.

AGENT

VR

67°

Partly cloudy

Tool Calls

A2UISpec

MCP-Ul spec
Open-JSON-Ulspec
Your own custom specs

Context GenUl

collaboration?

YYou are absolutely right!
AG-Uland A2Ul work great together.

67°

Partly cloudy

App state

Agentic Application

Application Surfaces for Generative Ul

Generative Ul can surface in different parts of an application
depending on how users interact with the agent and how
much the application mediates that interaction. These
surfaces shape the UX, developer responsibilities, and where
generative Ul appears.

1. Chat (Threaded Interaction)

A Slack-like conversational interface where the app brokers
each turn. Generative Ul appears inline as cards, blocks, or
tool responses.

Key traits:

Turn-based, message-driven flow.
App mediates all agent communication.
Great for support, Q&A, debugging, and guided
workflows.

e Examples: Slack bots, Discord bots, Intercom Al
Agent, Zendesk Al, GitHub Copilot Chat, Notion Al
Chat.

2. Chat+ (Co-Creator Workspace)

Hi, I'm an agent! | can help you with anything you need and
will show you progress as | work. What can | do for you?

0 O @

Please build a plan to go to mars in 5 steps.

Task ProgreSS 5/5 Complete

o Planning mission logistics
a Designing spacecraft
o Selecting crew

0 Testing equipment

J Launching mission

| created a plan to go to Mars in 5 steps, including planning
logistics and selecting the crew. #*\,
0 & @

Type a message...

A side-by-side or multi-pane layout: chat in one pane, a dynamic canvas in another. The canvas
becomes a shared working space where agent-generated Ul appears and evolves.

Key traits:

Data Dashboard

nteractive data visualization with Al assistance

e Chat remains present but

secondary. - eCn
e Canvas displays structured
outputs and previews. Sales Overview

Monthly sales and profit data

e Generative Ul can appear in the
canvas or chat space.
e Ideal for creation, planning,

Data Assistant

Hello, I'm here to help you understand your data.

How can | help?

2,584 12.3%

@ Sales @ Profit @ Expenses

editing, and multi-step tasks. \/\/\—//‘
$2,000 \/\/\—//

e Examples: Figma Al, Notion Al e e |

workspace, Google Workspace
Duet side-panel, Replit
Ghostwriter paired editor.

Product Performance

Sales by Ca

3. Chatless (Generative Ul integrated
into application Ul) Make Your Recipe

O 45min v Y Intermediate -

The agent doesn’t talk directly to the user. Instead,
it communicates with the application through APIs,
and the app renders generative Ul from the agent
as part of its native interface.

Dietary Preferences

() High Protein [J Low Carb Spicy (] Budget-Friendly () One-Pot Meal [Vegetarian

O Vegan

Ingredients + Add Ingredient
Key traitS: w Carrots \ All-Purpose Flour o Chili Peppers
4 3 large, grated v 2 cups 2, finely chopped
No chat surface at all.
App decides when and where generative L R L Yo
Ul appears.

e Feels like a built-in product feature, rather Instructions i st
than a conversation. breheat oven to 350°F (176°C)

e |deal for dashboards, suggestions, and ’
autonomous task helpers. Add grated carrots and chopped chill peppers to a mixing bowi.

e Examples: Microsoft 365 Copilot (inline -
editing), Linear Insights, Superhuman Al Vi ehoppec braccoliand corn .
triage, HubSpot Al Assist, Datadog e
Notebooks Al panels. “

Attributes of Generative Ul

Types of Generative Ul, and even individual uses vary greatly in terms of two attributes:
freedom, and control.

Attribute: Freedom

The generative Ul types are highly differentiated by what they can represent - their visual
“freedom”. On the fixed end of the spectrum, static generative Ul's return only predefined
components. On the other end of this axis, open-ended Ul can include arbitrary HTML, making
any kind of interaction possible, in theory. Declarative Ul sits in the middle, with a wider, but still
constrained visual vocabulary form which both the programmer and the agent can choose.

@ Static Ul @ Declarative Ul @® Open-Ended Ul
Predefined components Structured spec Free-form
Fixed / Fully arbitrary /
predefined What can be free-form

represented?

Attribute: Who has Control?

A more subtle, and tricker to manage, attribute of generative Ul lies in who decides on the
representation: the Agent (LLM) or the Programmer (Application Developer).

To take open-ended generative Ul as an example, the agent has the ability to present arbitrary
HTML.

But where does the HTML come from? It can be predefined in code which is returned by the
agent, or it can be fully generated by an LLM. In many cases the application developer would
want to define what the agent can deliver in order to feel native to the app, even though the
programmer might want to use HTML for its richness.

Even with static generative Ul, there are control choices to be made. You can hardcode the
agent to present a specific generative Ul when something specific happens, or let an LLM
choose to surface it from scratch.

Agent Programmer
Who decides?

Types of Generative Ul

Generative Ul approaches fall into three broad categories, each with distinct tradeoffs in
developer experience, Ul freedom, adaptability, and long-term maintainability.

The three patterns can be summarized at a glance:

Static — Ul is chosen from a fixed set of hand-built components.
Open-Ended — Arbitrary Ul (HTML, iframes, free-form content) is passed between
agent and frontend.

e Declarative — A structured Ul specification (cards, lists, forms, widgets) is used
between agent and frontend.

As described above, these types are differentiated by their freedom/vocabulary of Ul
expression, but any of the types can be controlled by the application programmer, or left up to
the agent to define.

1. Static Generative Ul

Static generative Ul allows engineers to hand-craft specific
visual components, and agents simply decide which of
those components to use. The agent does not generate
arbitrary Ul; instead, it maps generated data to existing Ul
components.

In this model, the front end defines every detail of the
experience — the layouts, the styles, the interaction
patterns, and the constraints. The backend or agent
contributes information and intent, but the rendering
ultimately comes from a predefined set of components.

Why teams use it:

e Guarantees high visual polish and consistency.

New York City

38

What's the weather in New York City?

The current temperature in New York City is 38 degrees.

©

e |deal for high-traffic, mission-critical surfaces where predictability matters.

Tradeoffs:

e The more use cases, the more components you must build and maintain.
e The frontend codebase grows proportionally to the number of agent capabilities.

2. Open-Ended Generative Ul

Open-ended generative Ul represents the
opposite end of the spectrum. Here, agents
generate complete Ul surfaces — often as HTML,

iframes, or free-form markup. Instead of choosing brlsetos

Francis

from predefined components, the agent can :
respond with an entire Ul payload that the
frontend simply displays.

This approach provides unparalleled flexibility of

o,

4 Pizzaz Connector

expression. Agents can render a calendar, a HE

custom table, an animated visualization, or an i
interactive HTML widget, either generated by the

LLM, or predefined by an application developer.

The frontend primarily acts as a container.

INATOWN
Q.
postSt
o 9
San Francisco
%
% CI - |
%, 2
L50)
o0]
16th St

K8

k¥{% ~ Golden Boy Pizza
S ooty

~
(]

Why teams use it:

e Any type of Ul can be part of an agent response, whether predefined by the programmer
or generated by the agent..
Minimal coupling between frontend code and agent behavior.
Supports rapid prototyping and complex workflows without frontend engineering cycles.

Tradeoffs:

e Security and performance considerations when rendering arbitrary content.
e Typically web-first and difficult to port to native environments.
e Styling consistency and brand alignment become challenging.

3. Declarative Generative Ul

Declarative generative Ul balances structure and Sunny 47°F
flexibility by having agents return a structured o -
specification rather than arbitrary Ul code. Instead Mon Tue Wed Thu Fri

of free-form HTML, agents emit a well-defined
schema — such as a collection of cards, lists, 540 5g° 5g° _ -~
forms, or widgets defined by a declarative standard. 14
This approach preserves consistency while giving
agents far greater expressive power than purely Cloudy
static component libraries. It creates a middle

ground where Ul is not handcrafted for each use

case, but is also not fully free-form.

49.8°F

Why teams use it:

Supports a wide range of use cases without requiring custom components for each.
Developers can render the same spec across multiple frameworks (React, mobile,
desktop, etc.).

e Cleaner separation between application logic and presentation.

Tradeoffs:

e Custom Ul patterns may not be possible.
e Visual differences can still occur if specs are interpreted differently.

Ecosystem Mapping

Several recently announced Generative Ul Specifications have added richness (and some
confusion) to declarative generative Uls. These include MCP-UI, Open JSON Ul, and the
impending A2UlI.

The generative Ul styles map cleanly onto the existing ecosystem of tools and these standards:

Approach Examples Strengths Weaknesses

Static AG-Ul, CopilotChat, Fidelity, reliability, brand Engineering intensive,
useAgent control linear growth

Open-Ended MCP-UI, ChatGPT Unlimited creativity Security, Web-first
Apps

Declarative Open-JSON-UI, Balanced, scalable, Limited full customization
A2UlI multi-renderer

This mapping highlights that no single approach is superior — the best choice depends on your
application's priorities, surfaces, and UX philosophy.

AG-Ul is Gen Ul Agnostic

& AG-UI
AG-Ul is designed to support the full spectrum of A2U1Spec

generative Ul techniques while adding important /_\

capabilities that unify them. MCP-Ulspec
67°

Partly cloudy

AG-Ul integrates seamlessly with all types: static,
declarative, and open-ended generative Ul

approaches. Whether teams prefer handcrafted
Your own custom specs

components, structured schemas, or agent-authored

Open-JSON-Ulspec

You are absolutely right!

Sur'faCGS, AG'UI can Support the Workf|0W AG-Uland AZUlwork great together.
But AG-Ul adds shared primitives — interaction 67y°y

models, context synchronization, event handling, a
common state framework — that standardize how

https://www.copilotkit.ai/ag-ui-and-a2ui

agents and Uls communicate across all surface types.

This creates a consistent mental model for developers while empowering agents to take
advantage of the capabilities of any generative Ul pattern.

Example Usage for each Generative Ul Type

1. Static Gen Ul Using CopilotChat

import {
CopilotChat
useRenderTool

} from "@copilotkit/react-ui/v2"

useRenderTool ({
name: "get_weather",
render: ({ args, result })
return <WeatherCard

def get_weather(location: str):
return {temp: 38, humidity: 50}

agent agent(location={args.location}

"gpt-5.1", W~ temp={result.temp}
tools=[get_weather] . />3
13

agent.ag_ui.serve() return <CopilotChat/>

What's the weather in New York City?

New York City

38

The current temperature in New York City is 38 degrees.

©

2. Open-ended Gen Ul - Using MCP-UI & ChatGPT Apps SDK

ChatGPT UI

<!-- ChatGPT wraps your app in sandboxed iframes -->

3 src="https://web-sandbox.oaiusercontent.com/...

< src="https://your-app.example.com/">
<!-- Your ChatGPT App SDK UI runs here -->

</ > E
</ > ?
</ > : :
sanst | HE Qms\
BushSt PostSt

~
<

</ >

g O
9 San Franc?sco %
il

e
Lo
9
16th St
ST i
oy e Tony's Pizza Napoletana L% ~ Golden Boy Pizza
Noapaian s .o S8

3. Declarative Generative Ul Using Open-JSON-UI

Card
Image src={airline.logo} size={24}

Text value={'${airline.name} ${number} }

Text value={ ${departure.city} » ${arrival.city}'}
Card

e

Pan America PA 845
San Francisco = London

	
	What Is Generative UI?
	
	Application Surfaces for Generative UI
	1. Chat (Threaded Interaction)
	2. Chat+ (Co‑Creator Workspace)
	3. Chatless (Generative UI integrated into application UI)

	Attributes of Generative UI
	Attribute: Freedom
	
	Attribute: Who has Control?

	Types of Generative UI
	
	1. Static Generative UI
	2. Open-Ended Generative UI
	3. Declarative Generative UI

	Ecosystem Mapping
	
	AG-UI is Gen UI Agnostic
	Example Usage for each Generative UI Type
	1. Static Gen UI Using CopilotChat
	2. Open-ended Gen UI - Using MCP-UI & ChatGPT Apps SDK
	3. Declarative Generative UI Using Open-JSON-UI

