

What Is Generative UI?
Generative UI refers to any user interface that is
partially or fully produced by an AI agent,
rather than authored exclusively by human
designers and developers. Instead of the UI being
hand‑crafted in advance, the agent plays a role in
determining what appears on the screen, how
information is structured, and in some cases even
how the layout is composed.

The core idea is simple: as agents become more
capable, an agentic application’s UI itself becomes
more of a dynamic output of the system — able to
adapt, reorganize, and respond to user intent and
application context. This can be done in very
different ways, each with its own tradeoffs.

In the following sections, we will cover:

●​ Application Surfaces - where Generative
UI shows up within an agentic application.

●​ Attributes - how different Generative UI
types and uses vary and why.

●​ Types - the prominent types of Generative
UI, their uses and tradeoffs.

Application Surfaces for Generative UI
Generative UI can surface in different parts of an application
depending on how users interact with the agent and how
much the application mediates that interaction. These
surfaces shape the UX, developer responsibilities, and where
generative UI appears.

1. Chat (Threaded Interaction)

A Slack-like conversational interface where the app brokers
each turn. Generative UI appears inline as cards, blocks, or
tool responses.

Key traits:

●​ Turn-based, message-driven flow.
●​ App mediates all agent communication.
●​ Great for support, Q&A, debugging, and guided

workflows.
●​ Examples: Slack bots, Discord bots, Intercom AI

Agent, Zendesk AI, GitHub Copilot Chat, Notion AI
Chat.

2. Chat+ (Co‑Creator Workspace)

A side‑by‑side or multi-pane layout: chat in one pane, a dynamic canvas in another. The canvas
becomes a shared working space where agent‑generated UI appears and evolves.

Key traits:

●​ Chat remains present but
secondary.

●​ Canvas displays structured
outputs and previews.

●​ Generative UI can appear in the
canvas or chat space.

●​ Ideal for creation, planning,
editing, and multi‑step tasks.

●​ Examples: Figma AI, Notion AI
workspace, Google Workspace
Duet side‑panel, Replit
Ghostwriter paired editor.

3. Chatless (Generative UI integrated
into application UI)

The agent doesn’t talk directly to the user. Instead,
it communicates with the application through APIs,
and the app renders generative UI from the agent
as part of its native interface.

Key traits:

●​ No chat surface at all.
●​ App decides when and where generative

UI appears.
●​ Feels like a built-in product feature, rather

than a conversation.
●​ Ideal for dashboards, suggestions, and

autonomous task helpers.
●​ Examples: Microsoft 365 Copilot (inline

editing), Linear Insights, Superhuman AI
triage, HubSpot AI Assist, Datadog
Notebooks AI panels.

Attributes of Generative UI
Types of Generative UI, and even individual uses vary greatly in terms of two attributes:
freedom, and control.

Attribute: Freedom

The generative UI types are highly differentiated by what they can represent - their visual
“freedom”. On the fixed end of the spectrum, static generative UI’s return only predefined
components. On the other end of this axis, open-ended UI can include arbitrary HTML, making
any kind of interaction possible, in theory. Declarative UI sits in the middle, with a wider, but still
constrained visual vocabulary form which both the programmer and the agent can choose.

Attribute: Who has Control?

A more subtle, and tricker to manage, attribute of generative UI lies in who decides on the
representation: the Agent (LLM) or the Programmer (Application Developer).

To take open-ended generative UI as an example, the agent has the ability to present arbitrary
HTML.
But where does the HTML come from? It can be predefined in code which is returned by the
agent, or it can be fully generated by an LLM. In many cases the application developer would
want to define what the agent can deliver in order to feel native to the app, even though the
programmer might want to use HTML for its richness.

Even with static generative UI, there are control choices to be made. You can hardcode the
agent to present a specific generative UI when something specific happens, or let an LLM
choose to surface it from scratch.

Types of Generative UI
Generative UI approaches fall into three broad categories, each with distinct tradeoffs in
developer experience, UI freedom, adaptability, and long-term maintainability.

The three patterns can be summarized at a glance:

●​ Static — UI is chosen from a fixed set of hand‑built components.
●​ Open‑Ended — Arbitrary UI (HTML, iframes, free‑form content) is passed between

agent and frontend.
●​ Declarative — A structured UI specification (cards, lists, forms, widgets) is used

between agent and frontend.

As described above, these types are differentiated by their freedom/vocabulary of UI
expression, but any of the types can be controlled by the application programmer, or left up to
the agent to define.

1. Static Generative UI

Static generative UI allows engineers to hand-craft specific
visual components, and agents simply decide which of
those components to use. The agent does not generate
arbitrary UI; instead, it maps generated data to existing UI
components.

In this model, the front end defines every detail of the
experience — the layouts, the styles, the interaction
patterns, and the constraints. The backend or agent
contributes information and intent, but the rendering
ultimately comes from a predefined set of components.

Why teams use it:

●​ Guarantees high visual polish and consistency.
●​ Ideal for high-traffic, mission-critical surfaces where predictability matters.

Tradeoffs:

●​ The more use cases, the more components you must build and maintain.
●​ The frontend codebase grows proportionally to the number of agent capabilities.

2. Open-Ended Generative UI

Open-ended generative UI represents the
opposite end of the spectrum. Here, agents
generate complete UI surfaces — often as HTML,
iframes, or free-form markup. Instead of choosing
from predefined components, the agent can
respond with an entire UI payload that the
frontend simply displays.

This approach provides unparalleled flexibility of
expression. Agents can render a calendar, a
custom table, an animated visualization, or an
interactive HTML widget, either generated by the
LLM, or predefined by an application developer.
The frontend primarily acts as a container.

Why teams use it:

●​ Any type of UI can be part of an agent response, whether predefined by the programmer
or generated by the agent..

●​ Minimal coupling between frontend code and agent behavior.
●​ Supports rapid prototyping and complex workflows without frontend engineering cycles.

Tradeoffs:

●​ Security and performance considerations when rendering arbitrary content.
●​ Typically web-first and difficult to port to native environments.
●​ Styling consistency and brand alignment become challenging.

3. Declarative Generative UI

Declarative generative UI balances structure and
flexibility by having agents return a structured
specification rather than arbitrary UI code. Instead
of free-form HTML, agents emit a well-defined
schema — such as a collection of cards, lists,
forms, or widgets defined by a declarative standard.

This approach preserves consistency while giving
agents far greater expressive power than purely
static component libraries. It creates a middle
ground where UI is not handcrafted for each use
case, but is also not fully free-form.

Why teams use it:

●​ Supports a wide range of use cases without requiring custom components for each.
●​ Developers can render the same spec across multiple frameworks (React, mobile,

desktop, etc.).
●​ Cleaner separation between application logic and presentation.

Tradeoffs:

●​ Custom UI patterns may not be possible.
●​ Visual differences can still occur if specs are interpreted differently.

Ecosystem Mapping
Several recently announced Generative UI Specifications have added richness (and some
confusion) to declarative generative UIs. These include MCP-UI, Open JSON UI, and the
impending A2UI.

The generative UI styles map cleanly onto the existing ecosystem of tools and these standards:

Approach Examples Strengths Weaknesses

Static AG-UI, CopilotChat,
useAgent

Fidelity, reliability, brand
control

Engineering intensive,
linear growth

Open-Ended MCP-UI, ChatGPT
Apps

Unlimited creativity Security, Web-first

Declarative Open-JSON-UI,
A2UI

Balanced, scalable,
multi-renderer

Limited full customization

This mapping highlights that no single approach is superior — the best choice depends on your
application's priorities, surfaces, and UX philosophy.

AG-UI is Gen UI Agnostic
AG-UI is designed to support the full spectrum of
generative UI techniques while adding important
capabilities that unify them.

AG-UI integrates seamlessly with all types: static,
declarative, and open-ended generative UI
approaches. Whether teams prefer handcrafted
components, structured schemas, or agent-authored
surfaces, AG-UI can support the workflow.

But AG-UI adds shared primitives — interaction
models, context synchronization, event handling, a
common state framework — that standardize how

https://www.copilotkit.ai/ag-ui-and-a2ui

agents and UIs communicate across all surface types.

This creates a consistent mental model for developers while empowering agents to take
advantage of the capabilities of any generative UI pattern.

Example Usage for each Generative UI Type

1. Static Gen UI Using CopilotChat

2. Open-ended Gen UI - Using MCP-UI & ChatGPT Apps SDK

3. Declarative Generative UI Using Open-JSON-UI

	
	What Is Generative UI?
	
	Application Surfaces for Generative UI
	1. Chat (Threaded Interaction)
	2. Chat+ (Co‑Creator Workspace)
	3. Chatless (Generative UI integrated into application UI)

	Attributes of Generative UI
	Attribute: Freedom
	
	Attribute: Who has Control?

	Types of Generative UI
	
	1. Static Generative UI
	2. Open-Ended Generative UI
	3. Declarative Generative UI

	Ecosystem Mapping
	
	AG-UI is Gen UI Agnostic
	Example Usage for each Generative UI Type
	1. Static Gen UI Using CopilotChat
	2. Open-ended Gen UI - Using MCP-UI & ChatGPT Apps SDK
	3. Declarative Generative UI Using Open-JSON-UI

